Validation of multilevel regression and poststratification methodology for small area estimation of health indicators from the behavioral risk factor surveillance system.
نویسندگان
چکیده
Small area estimation is a statistical technique used to produce reliable estimates for smaller geographic areas than those for which the original surveys were designed. Such small area estimates (SAEs) often lack rigorous external validation. In this study, we validated our multilevel regression and poststratification SAEs from 2011 Behavioral Risk Factor Surveillance System data using direct estimates from 2011 Missouri County-Level Study and American Community Survey data at both the state and county levels. Coefficients for correlation between model-based SAEs and Missouri County-Level Study direct estimates for 115 counties in Missouri were all significantly positive (0.28 for obesity and no health-care coverage, 0.40 for current smoking, 0.51 for diabetes, and 0.69 for chronic obstructive pulmonary disease). Coefficients for correlation between model-based SAEs and American Community Survey direct estimates of no health-care coverage were 0.85 at the county level (811 counties) and 0.95 at the state level. Unweighted and weighted model-based SAEs were compared with direct estimates; unweighted models performed better. External validation results suggest that multilevel regression and poststratification model-based SAEs using single-year Behavioral Risk Factor Surveillance System data are valid and could be used to characterize geographic variations in health indictors at local levels (such as counties) when high-quality local survey data are not available.
منابع مشابه
Practice of Epidemiology Multilevel Regression and Poststratification for Small-Area Estimation of Population Health Outcomes: A Case Study of Chronic Obstructive Pulmonary Disease Prevalence Using the Behavioral Risk Factor Surveillance System
A variety of small-area statistical models have been developed for health surveys, but none are sufficiently flexible to generate small-area estimates (SAEs) to meet data needs at different geographic levels. We developed a multilevel logistic model with both stateand nested county-level random effects for chronic obstructive pulmonary disease (COPD) using 2011 data from the Behavioral Risk Fac...
متن کاملComparison of Methods for Estimating Prevalence of Chronic Diseases and Health Behaviors for Small Geographic Areas: Boston Validation Study, 2013
INTRODUCTION Local health authorities need small-area estimates for prevalence of chronic diseases and health behaviors for multiple purposes. We generated city-level and census-tract-level prevalence estimates of 27 measures for the 500 largest US cities. METHODS To validate the methodology, we constructed multilevel logistic regressions to predict 10 selected health indicators among adults ...
متن کاملTHE COMPARISON OF TWO METHOD NONPARAMETRIC APPROACH ON SMALL AREA ESTIMATION (CASE: APPROACH WITH KERNEL METHODS AND LOCAL POLYNOMIAL REGRESSION)
Small Area estimation is a technique used to estimate parameters of subpopulations with small sample sizes. Small area estimation is needed in obtaining information on a small area, such as sub-district or village. Generally, in some cases, small area estimation uses parametric modeling. But in fact, a lot of models have no linear relationship between the small area average and the covariat...
متن کاملNetwork Location and Risk of Human Immunodeficiency Virus Transmission among Injecting Drug Users: Results of Multiple Membership Multilevel Modeling of Social Networks
Background: Despite the implementation of harm reduction program, some injecting drug users (IDU) continue to engage in high-risk behaviors. It seems that there are some social factors that contribute to risk of human immunodeficiency virus (HIV) transmission in IDUs. The aim of this study was to analysis the social network of IDUs and examines the effect of network location on HIV transmission...
متن کاملComparison of Small-Area Analysis Techniques for Estimating Prevalence by Race
INTRODUCTION The Behavioral Risk Factor Surveillance System (BRFSS) is commonly used for estimating the prevalence of chronic disease. One limitation of the BRFSS is that valid estimates can only be obtained for states and larger geographic regions. Limited health data are available on the county level and, thus, many have used small-area analysis techniques to estimate the prevalence of diseas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of epidemiology
دوره 182 2 شماره
صفحات -
تاریخ انتشار 2015